

ALL RIGHTS RESERVED BY FRED MUNDELL and FUNDAMENTAL DESIGNS LTD.

These schematics / code / layouts are for the Skywave H1 Pitch-only “Theremin”. 16 of these were built and operated in

the Royal Festival Hall (South-bank arts centre) for 10 days in 2010.

These notes are being published without any permission for any entity to copy, use or manufacture these instruments –

The ONLY permission given is for individuals to use this content for educational purposes, or for construction of ONE

instrument based on the information given here, FOR THEIR OWN USE ONLY.

NO warranty of ANY KIND is given for the content herein. I will not undertake ANY correspondence regarding this

content unless a donation of not less than £10 is made to http://www.streetkidsrescue.org/ prior to contacting me – When

donating, please insert the words Skywave Theremin in the comment field – I will then receive notification of your email

address and know that you have paid.

I can provide a pre-programmed H1 PSoC for £15. Email : fred@fundes.co.uk

All code and details required to copy this part are provided below, and PSoC designer is available from Cypress FOC.

Configuration of PSoC CY8C27143: IC 1

Extremely simple – Frequencies of reference and variable oscillators are compared using the CTR16 and TIMER16

UM’s, The state is computed in the UM’s ISR’s (Interrupt Service Routines) and these return a flag (Null) which is

polled by the main routine – If Variable oscillator frequency exceeds Reference oscillator frequency, Null is set, P0:4

is driven high, and the input on P1:1 is not passed through to P1:0

When Variable oscillator frequency < Reference oscillator frequency, Null is cleared, P0:4 is driven low, and the input

on P1:1 is passed through to P1:0

It should be noted that this instrument has both analogue and “digital” signal paths, the “digital” signal path is

disconnected by this PSoC when nulling (silencing) is required, the analogue signal is nulled at the mixer via the output

from P0:4 (which also drives the LED).

//--

// C main line

//--

#include <m8c.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

unsigned int captured;

unsigned int last_captured;

unsigned int calculated;

unsigned int temp;

unsigned char ovflow;

unsigned char nullctr;

unsigned char null;

#define M_READ_DIF PRT1DR&0x02

#define SET_DIF PRT1DR=1

#define CLR_DIF PRT1DR=0

#define CLR_NULL_to_LOW PRT0DR=0

#define SET_NULL_to_HIGH PRT0DR=0x10

#define REFTICKS 32000

void main()

{

REFERENCE_WritePeriod(REFTICKS);

VARIABLE_WritePeriod(0xFFFF);

last_captured = 0xFFFF;

REFERENCE_EnableInt();

VARIABLE_EnableInt();

M8C_EnableGInt;

REFERENCE_Start();

VARIABLE_Start();

while(1)

 {

 if(null==0)

 {

 if(M_READ_DIF)

 SET_DIF;

 else CLR_DIF;

 }

 }

}

//==

=

#pragma interrupt_handler REFERENCE_ISR

void REFERENCE_ISR(void)

{

captured = VARIABLE_wReadCompareValue();

//---

if(ovflow < 2)

 {

 ovflow = 0;

 //---

 if(captured > last_captured)

 {

 calculated = last_captured;

 temp = 0xFFFF - captured;

 calculated = calculated+temp;

 if(calculated >= REFTICKS)

 {

 if(nullctr < 2)

 nullctr++;

 }

 else if(nullctr > 0)

 nullctr--;

 }

 //---

 else{

 calculated = (last_captured - captured);

 if(calculated >= REFTICKS)

 {

 if(nullctr < 2)

 nullctr++;

 }

 else if(nullctr > 0)

 nullctr--;

 }

 //---

 if(nullctr == 2)

 {

 null = 1;

 SET_NULL_to_HIGH;

 }

 else if(nullctr == 0)

 {

 null = 0;

 CLR_NULL_to_LOW;

 }

 //--

 }

else{ // ERROR HANDLER

 if(nullctr < 2)

 nullctr++;

 if(nullctr == 2)

 {

 null = 1;

 SET_NULL_to_HIGH;

 }

 }

last_captured = captured;

ovflow = 0;

}

//==

=

#pragma interrupt_handler VARIABLE_ISR

void VARIABLE_ISR(void)

{

ovflow++;

}

